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We discuss the boundary value problem for calculating the scalar magnetic potentials inside 
and outside of a helically symmetric solenoid. Under some circumstances the potentials can be 
expanded in infinite series of cylindrical harmonics. For a circular cross-section solenoid, we 
derive a Green’s function integral representation of the series coefficients and calculate the 
radii of convergence of the series by a saddle point method. In some cases the “cylinders of 
convergence” can intersect the coil, so that there are physically accessible regions where the 
series fail to converge, Numerical evidence is presented to show that, even in some of these 
cases, the potentials can be accurately approximated by finite sums of cylindrical harmonics 
using boundary collocation. 0 1988 Academtc Press, Inc. 

1. INTRODUCTION 

The problem of calculating the magnetic field due to a helically symmetric 
solenoid arises in the treatment of certain stellarator configurations in their large 
aspect ratio limit. In particular, the helically symmetric limit of the heliac consists of 
an “l= 1” helical solenoid wound about a central axis near which are one or more 
helical line currrents [l-3]. Helically symmetric geometries are commonly 
described by a helical coordinate system formed by the linear combination of the 
conventional cylindrical coordinates (r, 4, z) [4]. It is also commonly assumed that 
helical-solenoidal fields can be well represented by a truncated series of cylindrical 
harmonics [S]. Such a representation can be desirable for the numerical solution 
of, for example, the free boundary equilibrium problem which may require the 
frequent evaluation of the values, and gradients, of the magnetic scalar potential (or 
the helical flux) on an iterated coordinate grid [6,7]. (The alternative scheme of 
evaluating a Biot-Savart-type integral over the solenoidal surface and then using 
interpolation on a fixed coordinate grid is not only more time consuming but is 
comparatively wasteful in terms of storage space and involves unnecessary inter- 
polation errors.) 
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Brazier-Smith [8] has noted that the solution of boundary-value problems in 
potential theory cannot be guaranteed to have a convergent representation as a 
series of (spherical) harmonic functions in cases where the boundary is not a 
(spherical) coordinate surface. The central problem of this paper, the calculation of 
the interior and exterior scalar magnetic potential of a helical solenoid of circular 
cross section carrying a homogeneous surface current i (such that i . e, = 0), 
provides an illustration of this phenomenon in cylindrical geometry. 

Consider the helical solenoid, y, similar to that shown in Fig. 1. In a helically 
symmetric configuration, all scalar physical quantities are functions only of r and 
[ = 14 - hz, where (r, 4, z) are the usual cylindrical coordinates and the constants 1 
and h give the periodicities in the 4 and z directions [4]. We shall restrict ourselves 
to I= 1 geometries, noting that the transformation to I> 1 can be effected by rescal- 
ing h. The “symmetry vector” 

U= 
e, + hre, 
1 + h2r2 (1) 

is tangential to y. We denote the unit outward normal by e, and the surface current 
per unit length by i. Any combination of helically symmetric currents on y will 
produce a constant net magnetic circulation, which we shall write as poiO, in region 
B of Fig. 1 and a constant azimuthal circulation, denoted by ~~1, in region A. 

From Ampere’s law, the scalar magnetic potential @ (such that B = V@) may be 
written as 

w+j+ v in A 

and 
@‘=p&z+ u in B. 

Here U and V are single-valued, harmonic potentials satisfying 

v2v=o in A, 

v2u=o in B, 

e,.V(V- U)ra,(V- U)=d, 
( 

poioz-$/ 
) 

on Y, 
(4) 

FIG. 1. One period of a helically symmetric solenoid, y, with the cylindrical coordinate system. The 
solenoid carries a surface current i and divides space into an exterior region A and an interior region B. 
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and 

v-V=f on Y, 

where f can be calculated, to within a constant, from the jump in the longitudinal 
components of B: 

e, x (B’ - B’)I y = pOi. (5) 

It can be shown, from well-known theorems of potential theory, that the three- 
dimensional boundary value problem of Eq. (4), where U and V have continuous 
second derivatives and V is bounded at infinity, has a unique solution (to within a 
constant) [9]. 

The structure of the rest of this paper is as follows: The conventional 
Fourier-Bessel series for the interior and exterior potentials are introduced in Sec- 
tion 2. Ignoring the question of convergence for the moment, we then use partial 
sums of these series to approximate the potentials numerically. The results of three 
collocation methods for finding the series coefficients are presented in Section 3. 
The rest of the paper deals with the convergence of the Fourier-Bessel series. A 
Green’s function integral representation for the series coefficients is derived in Sec- 
tion 4. In Section 5 the asymptotic behavior of these coefficients is calculated by the 
technique of saddle point integration in the complex plane. We derive two transcen- 
dental equations whose solutions are the radii of convergence of the series for the 
interior and exterior potentials. In the discussion of Section 6 we return to the inter- 
pretation of the results of Section 3. It appears that the expansion sets may be of 
some practical use even outside of (but close to) their regions of convergence. 

2. CHOICE OF THE EXPANSION SET 

A Fourier-Bessel expansion for a harmonic potential which is regular at the 
z-axis but not as r + co is [lo]: 

U= f jrn A;(k) exp(in#) exp(ikz) Z,(lklr) dk, 
Hz-m --oo 

where I,( Ikl r) is the modified Bessel function of the first kind of order n. For 
helically symmetric potentials (such that 8, U[ ,,[ = 0) which are antisymmetric 
about the helical ribbon i = 0, rc, so that the current distribution and the magnetic 
surfaces have reflection symmetry, Eq. (6) becomes 

CT= f a~Z,(nhr) sin(n[). (7) 
n=l 
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Similarly, an expansion for V which is bounded at infinity but not at r = 0 is 

V= f a;K,(nhr) sin(nc), 
lZ=l 

where the K,, are the modified Bessel functions of the second kind. We shall take the 
Nth partial sums of these series, UN and VN, to be trial solutions of Eq. (4). 

THEOREM. The error functions 5 u = U - UN and r v = V - VN which satisfy 

vy,=o in A, 

v*c,=o in B, 

~,(5,-5u)=51 on Y, 

tY-t”=t* on Y, 

take their extremal values on the helical solenoid. 

Proof We assume that y includes the z-axis. The value of any regular 3D har- 
monic potential at an interior point must be the arithmetic mean of its values on 
any sphere which is centred at that point [ 111. However, a helically symmetric 
potential is constant on helical lines (of constant [) implying that its value at an 
interior maximum must be greater than that on all of the neighbouring helical lines. 
This proves the theorem for tU. The proof for 5” is complicated by the point at 
infinity, but may be accomplished by inverting the exterior region with respect to a 
cylinder centred on the z-axis and applying the “minimax” principle for second 
order uniformly elliptic operators [ 121. 1 

An obvious corollary is that U, UN, V, and VN also take their extremal values 
on y. 

3. THE COLLOCATION METHOD 

Consider a helical solenoid which includes the z-axis and is symmetric about the 
helical ribbon [ = 0, x. Suppose that the current is confined to planes of constant z, 
so that Z=O and there is no secular term in region A, and that the distance, 
df = ,/[r’(dqb)* + (dr)*], along the contour may be parametrized by a variable x. 
The unit tangent vector in a constant z plane is 

(dl) e, = r(dq5) ed + (dr) e, 

r$e, + ie, 
0 e,= 

i ’ 
(9) 
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where the dot represents differentiation with respect to x. The unit normal, e,, may 
be caculated from e, x u. The jump conditions across y are 

and 

(Be-B’).e,=O 
(10) 

0 r$ a,( v- U) -I(1 + hV) a,( V- U) = &)i&ri 
r 

(Be-B’).e,=O 

0 i&(V-U)+&(v-U)=O. 

The boundary collocation method forces the trial solutions of Eq. (4) to satisfy 
the boundary conditions, Eqs. (10) and (1 l), at a finite number of “collocation 
points” on the solenoid. When the number of collocation points is greater than the 
number of unknowns in UN and VN the matrix system may be solved by the 
method of least squares. 

We have applied the collocation method to determine the scalar potential of a 
circular cross-section helical solenoid such as that shown in the z =0 plane in 
Fig. 2. The coil displacement, b, is less than its radius, a. The equation for the coil is 

a2 = r2 + b2 - 2rb cos l (12) 

which may be parametrized by [, 

i= - rb sin i . 
r-bcosi’ 

fj= 1, 

giving the boundary conditions 

(a2 + h2r2b2 sin2 C) 
(r-bcosc) 

a,( V- U) = -pOi, hrb sin [, 

and 
(a* + h2r2b2 sin2 [) 

rb sin c 
a,( V- U) = -pOiOhrb sin [. 

(13) 

(14) 

FIG. 2. A circular cross-section helical solenoid, radius a and displacement b, shown in the z = 0 
plane. Surface currents flow in the plane in the direction of e,. 



490 DEWAR AND GARDNER 

FIG. 3. Relative error versus the number of cylindrical harmonics in the expansion set for three. 
alternative collocation schemes. Methods 1 and 2 have square matricies with the collocation points 
distributed in equal arcs and equal angles, respectively. Method 3 is a least squares collocation method 
with 90 collocation points. 

Figure 3 shows the results of three collocation methods as applied to a solenoid 
of radius a = 1.0 m, displacement b = 0.5 m, and pitch h = 1.0 m-l. The relative 
error estimate, 

where the maxima are chosen from those points mid-way between the collocation 
points, has been plotted against N. For methods 1 and 3 the collocation points were 
distributed in equal arcs along the contour in the z = 0 plane. For method 2 they 
were distributed in equal increments of 4 which had the effect of concentrating them 
on the side of the coil closest to the z-axis. The first two methods had square 
matrices. The third was a least squares collocation method with 90 collocation 
points. The first method was inaccurate at all values of N. The other two showed an 
exponential decrease in 5’ up to N = 40. For N> 40 the loss of accuracy of 
method 2 coincided with the matrix system becoming ill-conditioned. 

The accuracy of all three collocation methods depended on the coil displacement. 
In contrast to Fig. 3, if b = 0.15 method 1 (equal arc collocation) with N= 20 had a 

l * . 

0.0 0.1 0.2 0.3 04 0.5 0.6 

b 

FIG. 4. Relative error of the least squares collocation method versus coil displacement for 10 and 30 
cylindrical harmonics. The critical values of b for the exterior (b:) and the interior (bk) series are also 
shown. 
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relative error of 5’ = 6 x 10 -” which was much better than equal angle collocation 
(method 2) (c’= 2 x lo-‘). The least squares collocation method gave the best 
results over a range of values of b and N and was insensitive to the placement of the 
collocation points. For N= 30, 41’ for method 3 ranges from lo- l6 at b = 0.1 to 
lo-’ at b =0.6 as shown in Fig. 4. We shall return to discuss these results in 
Section 6. 

4. GREEN'S THEOREM FOR THE HELICAL SOLENOID 

It can be shown that [ 13, 141 

G(r, i I ro, lo) = -2 1 n r, + 4 f z,Wr, ) Khhr, ) cos[n(i - Co)], (17) 

where r , =max(r, ro) and r, = min(r, rO), is a helical Green’s function satisfying 

V*G = -5 6(r - ro) S([ - Co). 

Consider the integration of UV*G - GV*U over the cut helical tube enclosed by one 
period, yP, of the helical solenoid y of Fig. 1. Applying Green’s theorem in the usual 
fashion we have 

8a*h-‘U(r,,i,)=I (Ga,U--UiJ,G)dS 
YP 

(19) 

for observer points (r,, [,) inside y. and 

O=[ (Gi?,U-Ua,G)dS 
Y” 

(20) 

for points (rA, iA) outside. A similar result holds for V if the integration is carried 
out over the volume outside of yP giving 

Note the the surface integrals over the ends of the cut helical tube defined by yP 
cancel by periodicity. We can insert the boundary conditions across y into the 
integral noting that the tangential condition is equivalent to U= V+ c, where c is 
an arbitrary constant which we set to zero. Also, in the notation of Section 3, 

(dS) d, = (dz)(dX)[r$ 8, - ir-‘(1 + h*r*) a,]. 

For a circular coil this gives (from Eqs. (10) and (13)) 

(22) 

U(r,, id 
V(rA,lA) 

G dL (23) 
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where r(c) is the function defined by Eq. (12). When rA is greater than a + b and 
when rB is less than a-b, Eq. (21) returns the expansions for U and V of Eqs. (7) 
and (8) providing the order of the integration and summation can be interchanged. 
This is justified whenever the resultant series converges uniformly [15]. The 
coefficients ai and a; in Eqs. (7) are given by 

and 

ip,i,h K 
I 

dr (f-Z-- ” 7c -n 
d[ r z Z,(nhr) exp(in[). 

(24) 

By expanding Eqs. (24) and (25) in b/a it is possible to derive analytic 
approximations for the series coefficients when the coil displacement is small. For 
instance, to leading order the first coefficient in the interior series becomes 

af - p&,hubK,(hu), 

a result which has been derived by Sy by another method [16]. 

(26) 

5. CONVERGENCE OF THE CYLINDRICAL HARMONIC EXPANSIONS 

Because there are no sources other than the solenoid, U and V are analytic 
everywhere throughout their domains of definition (B and A, respectively, including 
y if it is smooth). The Fourier-Bessel series of Eqs. (7) and (8) also define analytic 
functions throughout those parts of the interior and exterior regions where they 
converge. In the previous section we showed the equivalence of these series to the 
Green’s function integral expression for U (and V) inside (and outside) the inner 
(and outer) cylinder tangential to y. The series must continue to be valid represen- 
tations of the potentials throughout the intersection of their domains of definition 
and their regions of convergence. In this section we determine these regions by 
considering the large-n asymptotic behaviour of the u,‘s using the technique of 
saddle point integration in the complex plane. 

It will be convenient to change the variable of integration in Eqs. (24) and (25) 
from c to u = r*. The definite integral in terms of 5 can be shown to be equivalent to 
an integration about a closed contour in the complex u plane as follows. The 
inverse function, c(u) of Eq. (12), can be written 

(27) 
= --iln[w+(w*- l)“‘]. 
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The argument of the logarithm has branch points at w = f 1 or at u = (a - b)* 
and u = (a + b)*. We take the branch cut to join these points along the real axis. In 
the u plane there is an additional cut along the negative real axis to keep u”* single 
valued, as in Fig. 5a. For w = x + is with 1x1 < 1 it can be seen that 

[-arg[x+sign(s) i(1 -x2)“*] (28) 

to leading order in E. Thus, the value of [ E ( -71, rc) around the circumference of the 
coil will be returned by shrinking a clockwise contour of 

i(u) = -i In 
( 

u + b* - a2 - [u - (a + b)*] “*[u - (a - b2] ‘I2 

2bu II2 ) 
(29) 

onto the isolated cut in the u (or w) plane. This corresponds to the choice of the 
minus sign in Eqs. (27) and (28). Note that when we change the variable of 
integration to u the functional dependence of the integrand on c is via exp(inc) 
only, so that there is no additional cut due to the logarithm. Note also that the 
range of exp(in{) is the interior of the unit circle. 

The integrals of Eqs. (24) and (25) now become 

i/L&h a’ =- n s 271 c 
du W(+)(nh~‘/~) exp[inc(u)] 

n 

and 

ip&h ai =- n i du ~(-)(nhul~*) exp[in[(u)], 
2c n 

(30) 

(31) 

where the contour C is as shown in Fig. 5a. For brevity in the following analysis we 
have defined the functions 

To find the large-n behaviour of the a,‘~ we seek to deform C to pass through a 
saddle point in the absolute value of the integrand along the line of steepest descent 

FIG. 5. (a) The complex u plane showing the cuts needed to make exp[i[(u)] single valued, and 
the contour C in Eqs. (30) and (31). (b) The deformed contours C, and C- crossing the saddle 

points u+ and K. 
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[ 171. We use the large order, large argument asymptotic forms [ 181 for Z,, and K,, 
summarized by 

evbvW1 
v:)(nhu”2) - ~~~)1/2( 1 + h2U)l/4 

for n -+ co, where 

q(u) s (1 + h2u)l12 + In 

(33) 

(34) 

and 0 = + corresponds to the exterior (e) expansion and c = - corresponds to the 
interior (2) expansion. 

Equations (30) and (31) can both be written in terms of the integral 

Substituting Eq. (33) into Eq. (35) we find 

,a(/) N 
h2 

I 2(27cn)“2 c 
du expC -&WI 

(1 + h2u)1’4 ’ 

(35) 

(36) 

where 
f,(u) = Z(u) + v(u). (37) 

The saddle points are obtained by finding the stationary points of f,(u). That is, 
they are the roots of the equation 

f;(u)=o. (38) 

After substituting Eqs. (29) and (34) into Eq. (37), writing Eq. (38) in the form 
ii’(u) = -ore’, and squaring we find a quadratic equation whose roots are 

U f -a2+b2+2pab, (39) 
where 

pc(l +b-2h-2)“2. (40) 

Because of the squaring operation, one or both of U+ may be spurious as roots of 
Eq. (38). We must distinguish two cases: 

Case I. h2 > (a2 - b2)-‘, U- > -l/h2 > b2 -a’, P-C a/b. In this case the only 
zero off’,(u) is u,, and the only zero off’(u) is u _ . Evaluating f(u) and f”(u) at 
these saddle points we find 

f+(u+)=h(a+pb)+ln (41) 
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f’;(u+)= pbh3 
4a(a+pb)’ 

f-(u- kiO)= Tin:-h(a-pb)+ln p-k , 
( ) 

f”(u-)= pbh3 
4u(u - pb)’ 

(42) 

(43) 

(44) 

Note that exp fP (u) is continuous in the neighbourhood of u _ because the jump in 
f-(u) is 27ci. 

Case II. h* < (a’- b*)-‘, - l/h* < u- <b* -a* < 0, p > u/b. In this case both 
u + and u _ are zeros off, (u), whereas f _ (u) has no zeros (on the principal sheet 
defined by Eq. (29)). Equations (41) and (42) remain valid, while 

f+(u-)=h(pb-u)+ln 

f':(u_)= pbh3 
4u(u - pb)’ (46) 

Except in the case h2 < (a’- b*)-‘, 0 = -, it is topologically possible to deform 
C to cross the highest saddle point along the path of steepest descent and so find 
the leading order, large-n asymptotic behaviour of 9;. For instance, in the case 
h2 < (a’- b*)-l, G= +, there are two saddle points, but it is the one at U= U+ 
which is relevant because f + (U + ) = f + ( u ~ ) + 2hu > f + ( u ~ ), and C can be deformed 
to the contour C, in Fig. 5b, as is also the case for h* > (a* - b2)-‘, TV = +. In the 
case h2 > (a’ - b*) ~ ‘, 0 = -, the contour CP of Fig. 5b is to be used. This is true 
even if U- is negative since inspection of Eqs. (29), (34), and (37) shows that the 
In u”~ terms in ii(u) and q(u) either cancel or combine to give -In u in fJu), so the 
cut along the negative real axis can be ignored for the integrand of Eq. (36). (One 
can also show that i(u) + 0 as u + 0 sufficiently fast that there is never a pole at the 
origin.) Expanding the integrals about the saddle points and integrating we find the 
leading order, large-n asymptotic behaviour in the expansion coefficients to be 

w(nc + 1, 

and 

where p is given by Eq. (40) and 

c,=ah(u+opb)+ln(p-h-lb-‘). 

(47) 

(48) 

(49) 
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Although Eq. (48) has been derived assuming Case I, p < a/b, it can be shown to 
be valid even in Case II (as might be expected from analytic continuation since 
there is no singularity when a = pb). This is shown by deforming C to wrap around 
the negative real axis and evaluating the contribution of the cut. In this way we can 
show that 

yLp’= -iy2j-io 
du Z,(nh~“~) exp[inc(u)]. 

- cc - io 

One may verify from Debye’s formula [ 191 that Eq. (33) remains valid as the 
leading order behaviour of Z,(nZru”‘) on the cut, provided U> -l/h*. Thus the 
subdominant saddle point for 9:’ ), a-, becomes the relevant saddle point for Si- ) 
and Eq. (48) again results. 

To determine the radii of convergence of the series of Eqs. (7) and (8) we need to 
use both the asymptotic behaviour of the expansion coefficients, Eqs. (47) and (48), 
and that of the Bessel functions, Eq. (33). The radius of convergence, rc, 
corresponds to the cylinder on which the exponential divergence of one is just 
balanced by the exponential convergence of the other. For the exterior and interior 
problems it is found by solving the transcendental equations 

rl(r:)=c+, (51) 

or 

r](ri) = -c-, (52) 

where q is given by Eq. (34) and c* by Eq. (49). The exterior expansion converges 
absolutely for r > r:, and the interior expansion converges absolutely for r = rf. 

Some representative values of r; are given in Table I. We have checked some of 
these results numerically by estimating the limiting ratio of the terms in the interior 
and exterior series as calculated by the Green’s function method. The fact that 

TABLE I 

Examples of Radii of Convergence Calculated from Eqs. (51) and 
(52) for the Exterior (r:) and Interior (r:) Series 

h a 

0.8 1.0 
1.0 1.0 
1.0 1.0 
1.0 1.0 
1.0 1.0 
2.0 1.0 

cc a 

b r : r : 

0.5 1.00 2.08 
0.25 0.63 2.28 
0.3 0.13 2.11 
0.5 1.10 1.62 
0.7 1.41 1.30 
0.5 1.36 0.87 

b afb a-b 
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r: < a + b for finite h means that, as far as the exterior field is concerned, the 
solenoid could be replaced by an equivalent helical sheet current flowing on the 
surface of a cylinder of radius r:, interior to the radius of the outermost point of the 
solenoid [20]. Similarly, the interior field could be reproduced by a helical sheet 
current on a cylinder of radius ri, greater than the radius of the innermost point of 
the solenoid. 

If r: < a - 6, the exterior harmonic expansion converges throughout A, and if 
r:. > a + b the interior harmonic expansion converges throughout B. It turns out 
that r; < a - b in the case a = h = 1 while b is less than a critical value b: z 0.2888 
whereas rf. > a + b while b is less than a critical value b~.xO.5441. Thus the 
convergence criterion is not as stringent for the interior expansion, which is for- 
tunate because this is often the case of physical interest (since we often need an 
accurate and efficient representation of the magnetic field in the vicinity of a plasma 
confined to the interior region). 

6. DISCUSSION 

Figure 4 shows the dependence of the relative error of the least squares 
collocation method on the coil displacement, b, for two values of N in the case 
a = h = 1. The critical values 6; and bf are also shown. It is seen that the error 
appears to be a smooth function of b well beyond the point where convergence of 
the infinite series for the exterior part of the solution ceases. The situation is 
different for the square matrix, equal arc collocation method which, as we saw in 
Section 3, becomes very inaccurate at moderate coil displacements-presumably 
because not enough collocation points are placed on the inside of the coil where the 
exterior series should diverge. We can also see from Fig. 3 that in the case 
b = 0.5 > b: there appears to be exponential convergence of the least squares and 
equal angle collocation methods with respect to N up to N z 40 which is where 
matrix ill-conditioning sets in. If we assume that the ill-conditioning is a result of 
the finite precision of the computation then we have the seemingly paradoxical 
result that some boundary collocation methods would appear capable of giving 
arbitrary precision beyond the region of convergence of an infinite series in the 
same set of basis functions. 

Thus our results indicate that, for example, Brazier-Smith [S] was overly 
pessimistic about the dangers of harmonic expansion, provided enough expansion 
functions and the more robust least squares collocation method are used. The 
resolution of the paradox is presumably that the expansion sets remain complete 
beyond their radii of convergence. Rather than prove this we give a simple analogy. 
Consider the function 

f(x)=(l +x)-l (53) 

on the interval [0,2]. We know that { xn 1 n = 0, 1,2, . . . > forms a complete expan- 
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sion set for f(x) from the Weierstrass approximation theorem [21]. For example, 
the sequence of partial sums 

(54) 

where 

(55) 

converges toy(x) as 12 + co for x in the given interval. Yet the series 

Jo (-l)“x” (56) 

does not converge to f(x) beyond x = 1. Thus completeness and series convergence 
are two quite distinct questions. 

Since the series of Eq. (56) converges to f(x) over the subinterval [0, l), we must 
have a; + (- 1)” as II + cc with m fixed. However we also see from Eq. (55) that 
a;=(-1)“/2”+’ + 0 as n -+ co. Thus the superior convergence of the sequencef,(x) 
is achieved by smoothly reducing the ai in absolute magnitude as m + n relative to 
the ( - 1)” coefficients found from the partial sums of the series of Eq. (56). We see 
from Fig. 6 that the least squares collocation method does a similar thing to the 
expansion coefficients for the harmonic expansion. 

The convergence of the sum 1, a;xm toward f(x) in the region outside the 
radius of convergence of Eq. (56) must depend on cancellation of the low-m con- 
tributions in the sum by the m = O(n) contributions, since the a; approximate the 
coefficients of the divergent series when m + n. This cancellation effect means that 
all terms of the partial sum are important and that, as a practical method, har- 
monic representations will rapidly become uneconomical if pushed too far beyond 
the radius of convergence. It also helps explain why convergence ceases when the 
number of terms becomes large-rounding errors will become very important. 

Finally, Figs. 7a and b show the contours of the scalar potential and the helical 

0 5 10 15 20 25 30 
N 

FIG. 6. Ratios, R, of the magnitudes of consecutive terms in the exterior series for a helical solenoid 
of circular cross section, a = h = 1, b = 0.5. The ratios R = ~a~KJnhr)~/~a~~, K,[(n - 1) hr]l are evaluated 
at r = 0.5. The series was calculated using least squares collocation with 90 collocation points and 30 
expansion functions. 
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flux of the helical solenoid of the SHEILA heliac [22]. Although these results were 
obtained using least squares collocation, it was found that the radius of con- 
vergence of the interior series included the entire interior region so that it was 
possible to use a series calculated from the Green’s function integral in free-boun- 
dary equilibrium calculations [6]. Our establishment of a priori convergence 
criteria helps make the Green’s function-harmonic expansion method an attractive 
alternative to collocation. If collocation is to be used the maximum errors on the 
boundary should be calculated and compared with an exact technique (such as 
using the Bio-Savart integral of the current distribution). 

6 

FIG. 7. (a) Scalar potential for the solenoid of the helically symmetric limit of the SHEILA heliac 
in the z=O plane (a =0.065 m, b=0.025 m, h= 16.0 m-‘). Least squares collocation was used with 90 
collocation points and 30 expansion functions. (b) Helical flux for the solenoid of Fig. 7(a). 
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